
Structured

Programming

The Basics

Control structures

 They control the order of execution

 What order statements will be done in, or

whether they will be done at all (skipping)

 Different from data structures – which are

ways to access data, to operate on it

Why do structured programming?

 It's easier to understand code written

using structured programming

 Easier to test and debug code

 Easier to modify and maintain code

 Easier to work with other people to write

large programs

4 Control Structures

 Sequence

 Selection

 Iteration

 Module

Guarantees for All Structures

 ONE Entrance

 ONE Exit

SEQUENCE

Statement 1 Statement 2 Statement 3 . . .

Guarantees for Sequences

 Will execute the steps in the order given

 Will not enter or leave sequence in mid-

stream

 Will not skip steps

SELECTION(branch)

IF Condition THEN Statement1 ELSE Statement2

Statements1

Statement

Statements2

Condition . . .

Selection Guarantees

 Control always enters through the condition /

question

 One branch or the other is executed, never

both on one run

 MUST execute one branch or the other

 Processes in branches can be as large or

small as you want

 Do not write Dead Code!

Dead Code

LOOP(repetition)

Body

Condition
. . .

False

WHILE Condition DO Statement1

Guarantees

 Will go through test / condition at top to get

into loop

 ALL of body will be executed before test is

done again

 Body will be repeated until test is answered

differently (NO)

 Do not write Infinite Loops!

SUBPROGRAM(function)

SUBPROGRAM1 . . .

SUBPROGRAM1

a meaningful collection

of SEQUENCES,

SELECTIONS, LOOPS,

SUBPROGRAM calls

Module Flow of control

